
Structured

Programming

The Basics

Control structures

 They control the order of execution

 What order statements will be done in, or

whether they will be done at all (skipping)

 Different from data structures – which are

ways to access data, to operate on it

Why do structured programming?

 It's easier to understand code written

using structured programming

 Easier to test and debug code

 Easier to modify and maintain code

 Easier to work with other people to write

large programs

4 Control Structures

 Sequence

 Selection

 Iteration

 Module

Guarantees for All Structures

 ONE Entrance

 ONE Exit

SEQUENCE

Statement 1 Statement 2 Statement 3 . . .

Guarantees for Sequences

 Will execute the steps in the order given

 Will not enter or leave sequence in mid-

stream

 Will not skip steps

SELECTION(branch)

IF Condition THEN Statement1 ELSE Statement2

Statements1

Statement

Statements2

Condition . . .

Selection Guarantees

 Control always enters through the condition /

question

 One branch or the other is executed, never

both on one run

 MUST execute one branch or the other

 Processes in branches can be as large or

small as you want

 Do not write Dead Code!

Dead Code

LOOP(repetition)

Body

Condition
. . .

False

WHILE Condition DO Statement1

Guarantees

 Will go through test / condition at top to get

into loop

 ALL of body will be executed before test is

done again

 Body will be repeated until test is answered

differently (NO)

 Do not write Infinite Loops!

SUBPROGRAM(function)

SUBPROGRAM1 . . .

SUBPROGRAM1

a meaningful collection

of SEQUENCES,

SELECTIONS, LOOPS,

SUBPROGRAM calls

Module Flow of control

